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9. FINITELY GENERATED 

ABELIAN GROUPS 
 

§9.1. Finitely Presented Abelian Groups 
 The group: 

A, B, C | A4, B2, AB = BA, AC = CA, BC = CB 

is an example of a finitely-presented abelian group, but 

one which is written multiplicatively. Additively we 

would write it as: 

A, B, C | 4A, 2B, A + B = B + A, A + C = C + A, 

                                                                  B + C = C + B. 

 But if we’re working entirely with abelian groups 

we know that the generators commute so we omit the 

commuting relations and use [ ] instead of  . We write 

the group simply as [A, B, C | 4A, 2B] 

 

We denote the abelian group generated by X1, ... , Xn 

subject to the relators R1, ... , Rm by 

[X1, ... , Xn | R1, ... , Rm]. 

The relators are written additively. 

 Now a typical relator, Ri, can be written in the form 

ai1X1 + ... + ainXn where the aij form an m  n matrix of 

integers A. Since the names of the generators are not 

important, and the number of them is the same as the 

number of columns of A, we can recover the presentation 

from just the integer matrix A. 
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 For any m  n integer matrix A = (aij), [A] denotes 

the abelian group on n generators X1, ... , Xn, subject to 

the  m  relations: 

   a11X1 + ... + a1nXn = 0 

   a21X1 + ... + a2nXn = 0 

   ................................... 

   am1X1 + ... + amnXn = 0 

Where the matrix is written in terms of its components we 

omit the usual matrix parentheses. 

 

Example 1: 

 









8 0 0

0 8 0

0 0 8

2 2 2

  denotes the abelian group 

[A, B, C | 8A, 8B, 8C, 2A + 2B + 2C]. 

 

 Essentially a finitely-presented abelian group is a 

system of homogeneous linear equations, but with integer 

coefficients. The important difference between these and 

those that arise in linear algebra is that here, division is 

not permitted. For example an element, x, of order 8 

satisfies 8x = 0 which in linear algebra would imply that 

x = 0. But that’s because in linear algebra the coefficients 

come from a field while for abelian groups they’re 

integers. We can only divide by those integers that have 

integer inverses under multiplication, that is, 1. 
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Example 2: 






8 0 0

0 8 0

0 0 8
 denotes the abelian group\ 

[X, Y, Z | 8X,8Y, 8Z]. 

This is clearly a direct sum of cyclic groups, each of order 

8 and so the group is isomorphic to ℤ8  ℤ8  ℤ8. 

 

 Where the matrix is diagonal we can read off, from 

the diagonal elements, the nature of the corresponding 

abelian group as a direct sum of cyclic groups. 

 

Example 3: 






8 0 0

0 8 0

0 0 0
 denotes the abelian group 

[X, Y, Z | 8X, 8Y]. 

 

Strictly speaking we should have written down the third 

relator, 0Z, representing the relation 0Z = 0, but this is 

clearly redundant. The last generator has infinite order, so 

the group is isomorphic to ℤ8  ℤ8  ℤ. 

 

 So where the diagonal entry is 0 the corresponding 

direct summand is ℤ (not ℤ0). In the above example the 

third row is superfluous so we can write: 







8 0 0

0 8 0

0 0 0
  







8 0 0

0 8 0
   ℤ8  ℤ8  ℤ. 
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§9.2. Elementary Row Operations 
 We’re in a similar situation to that part of linear 

algebra that deals with the solution of systems of linear 

equations. Remember the powerful role played by the 

elementary row operations in the solution of such systems 

and the part they play in the Gaussian algorithm. 

 

 Let’s review the three types of elementary row 

operations. 

 

Ri  Rj: swap rows i, j 

This is equivalent to swapping a pair of equations in our 

system and, just as in linear algebra, this is permissible. 

The new system is equivalent to the original one and so 

the groups are isomorphic. 

 

Example 4: 







8   6    5

3   8  −2

1   0  −3

  






3   8  −2

8   6   5

1   0  −3

  

where we’ve swapped R1 and R2. 

 

Ri  k: Divide row i by k (k = 1 only) 

 This is where our abelian group situation differs 

from the linear algebra one. Our ‘scalars’ here are integers 

and division is not generally permitted. In fact the only 

values of  k for which this operation is permissible are k 

= 1. 
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Ri − kRj: subtract k times row j from row i (k any 

integer) 

 This is the most useful of all the elementary row 

operations in linear algebra and so it is here. Of course in 

our context only integer values of k can be used here. 

 

Example 5:  

Let G = 






8   6    5

3   8  −2

1   0  −3

 . 

Subtracting twice row 2 from row 1 we get 

G  






2 −10    9

3    8    −2

1    0   −3

 . 

Swapping rows 1 and 3 we get G  






1     0   −3

3   8    −2

2  −10     9

 . 

Now, mimicking the Gaussian algorithm, we can subtract 

3 times row 1 from row 2 and twice row 1 from row 3 to 

get 0’s underneath the 1 in the first column. 

G   






1     0   −3

0    8    7

0  −10   15

  . 

Now, adding row 2 to row 3 (that is R3 − (−)R2) we get 

G  






1    0   −3

0    8    7

0  −2   22

 . We write this as R3 + R2, though adding 

a multiple of a row is not a new operation. Note here that 
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only the first named row gets changed. So R2 + R3 is a 

different operation to R3 + R2. 

Now we can swap rows 2 and 3 to get G   






1    0  −3

0 −2   22

0    8    7

 . 

Now, with R3 + 4R2 we get G   






1    0   −3

0 −2   22

0    0    95

 . 

 If we could reach a diagonal matrix we would have 

identified the group as a direct sum of cyclic groups. But 

here this seems to be about as far as we can go. Any 

further elementary row operations would only make the 

matrix more complicated – less like a diagonal matrix. We 

need additional operations. 

 

§9.3. Elementary Column Operations 
 Elementary row operations convert a set of 

homogeneous linear equations into an equivalent set for 

the same set of variables. Once we start using column 

operations we begin to change the variables. But if we’re 

only interested in the structure of the group, up to 

isomorphism, we can use elementary column operations 

to produce a simpler set of equations on a different, but 

equivalent, generating set. 

 The simplest case would be that of swapping two 

columns. The effect is to swap the corresponding 

generators. The groups described by the presentations 

will be isomorphic. 
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Example 6: 






3     3    6

8     4    0

0   12  12
  

 [A, B, C | 3A + 3B +6C = 8A + 4B = 12B + 12C = 0] 

 [A, B, C | 3A + 3C +6B = 8A + 4C = 12B + 12C = 0] 

 [A, B, C | 3A + 6B +3C = 8A + 4C = 12B + 12C = 0] 

 






3     6    3

8     0    4

0   12  12
  

The effect of swapping the two generators B and C is to 

swap two columns of the integer matrix of the 

presentation. 

 

 Equally simple is an operation of the form Cj  −1 

which changes the sign of every entry in a given column. 

If Xj is the corresponding generator this corresponds to 

replacing Xj by −Xj. 

 

 When it comes to subtracting an integer multiple of 

one column from another the effect on the generators is a 

little less obvious. Consider the following example: 

 

Example 7: 







3     6    3

8   17   4

0    5   2
  

= [X1, X2, X3 | 3X1 + 6X2 + 3X3, 8X1 + 17 X2 + 4X3, 

                                                               5X2 + 2X3 = 0] 
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Define X1 = X1 + 2X2. Clearly the group is generated by 

{X1, X2, X3} since X1 = X1 − 2X2. 

Expressing the relators in terms of this new set of 

generators we get: 

3(X1 − 2X2) + 6X2 + 3X3, 8(X1 − 2X2) + 17X2 + 4X3, 

                                                                   5X2 + 2X3 = 0. 

 So the group has the equivalent presentation 

[X1, X2, X3 | 3X1 + 3X3, 8X1 + X2 + 4X3, 5X2 + 2X3] 

                                    






3   0   3

8   1   4

0   5   2
 . 

The effect of the change of variables X1 → X1 = X1 + 2X2 

is the elementary column operation C2 − 2C1. Note the 

change of sign and the swapping of the subscripts. 

 

 

 

 

 

 

 

Theorem 1: If the integer matrix  B  is obtained from  A  

by a sequence of elementary row and column operations 

then  [B]  [A]. ☺ 

 

Example 8: 







10  14   4

12  16   8

14  18   8
  






4  14  10

8  16  12

8  18  14
 C1  C3 

If the generators are X1, ... , Xn: 

 

Ci  Cj  corresponds to  Xi  Xj  

Ci  −1   corresponds to Xi → −Xi  

Ci − kCj  corresponds to Xj → Xj + kXi 
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                     






4    2    2

8  −8  −4

8  −6  −2

 C2 − 3C1 

                     






4    2    2

0  −12  −8

0  −10  −6

  R2 − 2R1, R3 − 2R1      

                     






  2    4    2

−12   0  −8

−10   0  −6

 C1  C2 

                    






   2    0     0

−12   24    4

−10   20    4

 C2 − 2C1, C3 − C1 

                              

                  






2    0     0

0   24    4

0   20    4
 R2 + 6R1, R3 + 5R1 

                  






2   0    0

0   4   24

0   4   20
 C2  C3 

                  






2   0    0

0   4    0

0   4   −4
 C3 − 6C2 

                  






2   0    0

0   4    0

0   0   −4
 R3 − R2 

                  






2   0   0

0   4   0

0   0   4
 C3  (−1) 
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We’ve managed to get the matrix of an equivalent 

presentation in diagonal form. But in terms of the new 

generators this is clearly a direct sum of cyclic groups, 

viz. ℤ2  ℤ4  ℤ4. 

 

§9.4. The Fundamental Theorem of 

Finitely-Generated Abelian Groups 
 Using the elementary row and column operations 

we can convert every integer matrix to diagonal form, and 

hence we have the following theorem. 

 

Theorem 2: Every finitely-presented abelian group is a 

direct sum of cyclic groups. 

Proof: Let A be the presentation matrix for a finite 

presentation of an abelian group. 

Case (1): A is 1  1: 

Let A = (m). We can multiply by −1, if necessary, so we 

may assume that m  0. 

Then [A]  ℤ  if m = 0 and 

                   ℤm if m > 0. 

(Of course ℤ1 is the trivial group so may be removed if it 

arises.) 

 

Case (2) A = (m , 0, ... , 0) for some m: 

[A] is isomorphic to the direct sum of ℤm and n − 1  copies 

of ℤ. 
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Case (3) A = 









m

0

...

0

  for some m: Clearly [A]  ℤm. 

Case (4) A is the m  n zero matrix: 

Clearly [A] is isomorphic to the direct sum of n copies of 

ℤ. 

 

Case (5) The general case: 

Suppose now that A  0 and has at least 2 rows and at 

least 2 columns. Choose a non-zero element with smallest 

absolute value. Permute rows and columns to bring it to 

the 1-1 position and, if necessary, multiply the first 

column by −1 to make it positive. Now subtract suitable 

multiples of the first row and column from the others so 

that all other entries in the first row and column are in the 

range 0  x < a11. 

 

 This whole process can be continued, reducing the 

smallest non-zero absolute value, until the matrix takes 

the form (m, 0, ... , 0), 









m

0

...

0

 or 






m 0

0  B
 where m is a non-

negative integer and B is an integer matrix with one less 

row and column. 

 

The theorem now follows by induction on the number of 

generators. ☺ 
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Example 9: 







9   6   7   5

30 21 17 13

18 15   7   5
   






5   9   6   7

13 30 21 17

 5  18 15   7
  permute columns 

                          






5   9   1   7

13 30   8  17

 5  18 10   7
  C3 − C1        

                          






1   5   9   7

 8  13 30 17

10   5  18   7
  permute columns 

                          






1    5    9    7

 0  −27  −42  −39

 0  −45  −72  −63

  R2−8R1, R3−10R1 

                         






1   0   0   0

 0 27 42 39

 0 45 72 63
  C5−5C1, C3−9C1, C4−7C1 

                         






27  42 39

 45 72 63
  omit ℤ1 

                         






27  42 12

 45 72 18
  C3 − C1 

                         






12  27 42

 18 45 72
  permute columns 

                         






12   3  42

 18  9  72
  C2 − 2C1 

                         






3 12  42

9 18  72
 permute columns 

                         






3    12    42

0  −18  −54
 R2 − 3R1 
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                     






3   0   0

0 18 54
 C2 − 4C1, C3 − 14C1 

                     ℤ3  [18  54] 

                     ℤ3  [18  0] C2 − 3C1 

                     ℤ3  ℤ18  ℤ. 
 

 The above theorem deals with finitely-presented 

abelian groups, those where there’s not only a finite set of 

generators, but where the relations that hold between 

them can be deduced from a finite set of relations. What 

about those that are merely finitely-generated? 

 By adapting the above argument slightly we can 

show that they too are direct sums of cyclic groups. And 

since direct sums of finitely many cyclic groups are 

finitely-presented it follows that all finitely-generated 

abelian groups are indeed finitely-presented! 

 

Theorem 3: Every finitely-generated abelian group is a 

direct sum of cyclic groups. 

Proof: Suppose we have a finitely-generated abelian 

group G. Consider the set of all relations that hold 

between the generators and let the coefficients be 

arranged in an integer array. This will in fact be a matrix 

with as many columns as there are generators, but with 

possibly infinitely many rows. Exactly the same 

algorithm can be used as before. With infinitely many 

rows of course there’d be practical difficulties in 

implementing it but since all the rows can be operated on 

in parallel there’d be no theoretical problem. The 
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finiteness of the number of columns means that the 

algorithm will terminate eventually. ☺ 

 

§9.5. Euler’s Theorem 
 A ready source of finite abelian groups can be 

found as integers modulo m under multiplication. Recall 

that if m is any positive integer ℤm
# denotes the group of 

all numbers from 1 to m that are coprime with m, under 

the operation of multiplication modulo m. (The 

coprimeness  ensures the existence of inverses.) 

 

Example 10: ℤ7
# = {1, 2, 3, 4, 5, 6}  ℤ6; 

                      ℤ8
# = {1, 3, 5, 7}  ℤ2  ℤ2; 

                        ℤ10
# = {1, 3, 7, 9}  ℤ4. 

 
 The order of ℤm

# is denoted by (m).This function 

 is called the Euler  function. (NOTE you pronounce 

‘Euler’ as ‘Oiler’.) It is an important function in number 

theory, with (m) being the number of numbers from 1 to 

m that are coprime with m. 

 

Lemma: (CHINESE REMAINDER THEOREM) 

If m, n are coprime then for all a, b  ℤ there exists 

x  ℤ such that: 

   x  a (mod m) and 

   x  b (mod n). 

Proof: Since  m, n  are coprime there exist integers  h, k  

such that  1 = mh + nk. 
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Let x = a + m(b − a)h. Clearly  x  a (mod m). 

Now x = a(1 − mh) + mhb 

           = a(nk) + mhb  

           = nka + (1 − nk)b 

            = b + nk(a − b) 

             b (mod n). ☺ 

 

Theorem 4: If m, n are coprime then ℤmn
  ℤm

#  ℤn
#. 

(We use “” here instead of ‘’ simply because we’re 

using multiplicative notation.) 

Proof: Suppose that m, n  are coprime. Then  x → (x, x)  

is a homomorphism from ℤmn
# to ℤm

#  ℤn
# since x is 

coprime to  mn  if and only if it’s coprime to both  m  and  

n. 

 

The kernel of this map is trivial since, if  x → (1, 1),  then  

x − 1  is a multiple of both  m  and  n  and so is a multiple 

of  mn  (because  m  and  n  are coprime). The fact that 

this map is onto is a consequence of the Chinese 

Remainder Theorem (the lemma above). ☺ 

 

Corollary: If m, n are coprime (mn) = (m) (n). 

 

Theorem 5: If p is prime, (pn) = pn−1 (p − 1) 

Proof: Of the pn numbers from 0 to pn −1 there are 

precisely pn−1 multiples of p. The remaining pn − pn−1 = 

pn−1(p − 1) numbers will be precisely the ones with no 

factor in common with pn. Hence (pn) = pn−1(p − 1). ☺ 
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Example 11: (200) = (23.52) = 22(2 − 1) 5
1
(5 − 1) 

                                                   = 4.1.5.4 = 80. 

 

Theorem 6: (EULER) If a is coprime with m then 

a(m)  1 (mod m). 

Proof: Suppose a is coprime with m.  Then a  ℤm
#. 

Suppose it has order n. By Lagrange's theorem n divides 

(m). Thus (m) = nq for some q  ℤ. 

Now a(m) = (an)q = 1q = 1. ☺ 

 

Corollary: (FERMAT) If p is prime then 

ap  a (mod p). 

Proof: If  p divides  a  then LHS = RHS = 0. 

Otherwise, by Euler’s theorem ap−1  1(mod p). 

 

Euler's theorem can be used to calculate the remainders of 

certain very large numbers. 

 

Example 12: What is the remainder on dividing 51000 by 

42? 

Solution: (42) = (2.3.7) = 12 so 512 = 1 (mod 42). 

We note that 5 is coprime to 42. 

Dividing 1000 by 12 we get a remainder of 4. 

[1000 = 12  83 + 4] 

So 51000 = (512)83.54 = 183.54 = 625 = 37. 

Hence 51000 leaves a remainder of 37 when divided by 42. 
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NOTE: To work this out directly, by calculating 51000 

first, would need far more computing power than is 

normally available. 

 

 In the decomposition of a finitely-generated group 

as a direct sum of cyclic groups the only finite summands 

we need are those whose orders are prime powers. This is 

because of the following theorem, which parallels 

Theorem 5. 

 

Theorem 7: If m, n are coprime then ℤmn   ℤm  ℤn. 

Proof: Let x = (1, 1)  ℤm  ℤn. 

Then kx = (k, k) = (0, 0) if and only if k is both a multiple 

of m and n. Since m, n are coprime this requires k to be a 

multiple of mn and so x has order mn, the same as the 

order of the group ℤm  ℤn itself. Hence ℤm  ℤn is cyclic 

and so is isomorphic to ℤmn. ☺ 

 

Example 13: ℤ24  ℤ3  ℤ8. Note that we can’t split ℤ8 

into ℤ2  ℤ2  ℤ2 because ℤ8 has only one element of 

order 2 while ℤ2  ℤ2  ℤ2 has 7 such elements. 

 

§9.6. Some Important Subgroups of an 

Abelian Group 
For an integer n and an abelian group G we define 

nG = {ng | g  G}. 

Clearly this is a subgroup of G since n(x + y) = nx + ny 

etc. Using multiplicative notation we would write this as 
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Gn = {gn | g  G}. Since this may not be a subgroup of G 

if G is non-abelian we don’t define this unless the group 

is abelian. 

 

Examples 14: 

(1) If G = ℤ4  ℤ8, then 

2G = {(0, 0), (0, 2), (0, 4), (0, 6), (2, 0), (2, 2), (2, 4), 

                                                                               (2, 6)} 

       ℤ2  ℤ4 and 3G = G. 

(2) If G = ℤ4  ℤ6 then 

2G = {(0, 0), (0, 2), (0, 4), (2, 0), (2, 2), (2, 4)} 

       ℤ2  ℤ3 and 

3G = {(0, 0), (0, 3), (3, 0), (3, 3), (2, 0), (2, 3), (1, 0), 

                                                              (1, 3)}  ℤ4  ℤ2. 

 

Theorem 8: If G, H are abelian groups 

n(G  H)  nG  nH. 

Proof: The map n(x, y) = (nx, ny) is an isomorphism. ☺ 

 

Theorem 9: m ℤn  ℤd where d =  
n

GCD(m, n)
 . 

Proof: mℤn is clearly cyclic, generated by m, and km = 0 

in ℤn if and only if 
n

GCD(m, n)
 divides k. Thus m has order 

n

GCD(m, n)
  and generates a cyclic group that is 

isomorphic to ℤn/GCD(m, n). ☺ 
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Example 15: 

If G = ℤ30  ℤ100, 2G  ℤ15  ℤ50, 3G  ℤ10  ℤ100, 

6G  ℤ5  ℤ50 and 28G  ℤ15  ℤ25. 

 Another useful subgroup, for each positive integer 

n, is G[n] = {g  G | ng = 0}. It consists of those elements 

of G whose order divides n and it’s clearly a subgroup of 

G since nx = 0 and ny = 0 imply n(x + y) = 0, etc. 

 We use the same notation if the abelian group is 

written multiplicatively, but here we would define it as 

G[n] = {g  G | gn = 1}. Again, for a non-abelian group it 

isn’t usually a subgroup and so we don’t define it unless 

the group is abelian. 

 

Examples 16: 

(1) If G = ℤ4  ℤ8, 

G[2] = {(0, 0), (0, 4), (2, 0), (2, 4)}  ℤ2  ℤ2 and 

G[3] = 0. 

(2) If G = ℤ4  ℤ6, G[2] = {(0, 0), (0, 3), (2, 0), (2, 3)} 

                                         ℤ2  ℤ2 and 

                                G[3] = {(0, 0), (0, 2), (0, 4)}  ℤ3. 

(3) If G = ℤ20
# then G2 = {1, 32, 72, 92, 112, 132, 172, 192} 

                                     = {1, 32, 72, 92} since (−x)2 = x2 

                                     = {1, 9}  ℤ2 and 

                              G[2] = {1, 9, 11, 19}  ℤ2  ℤ2. 
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Theorem 10: If G, H are abelian groups 

(G  H)[n] = G[n]  H[n]. 

Proof: This is because k(x, y) = 0 if and only if kx = 0 in 

G and ky = 0 in H. ☺ 

 

Theorem 11: ℤm[n]  ℤGCD(m, n). 

Proof: Suppose k  ℤm[n].  Then nk = 0 in ℤm and so m 

divides nk.  Hence 
m

GCD(m, n)
  divides k. Thus ℤm[n] is a 

cyclic group generated by 
m

GCD(m, n)
  and so is 

isomorphic to ℤGCD(m, n). ☺ 

 

Example 17: 

If G = ℤ30  ℤ100, G[2]  ℤ2  ℤ2, G[3]  ℤ3, 

G[6]  ℤ6  ℤ2 and G[28]  ℤ2  ℤ4. 

 

§9.7. The Order Profile of a Finite  

Abelian Group. 
 Once a finite group G has been written as a direct 

sum of cyclic groups the numbers of elements of each 

order can be easily determined. This is because we can 

easily identify the subgroups G[n] for each  n  and hence 

recover the order information. A table that lists the 

numbers of elements of each order is called the order 

profile of the group. 
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 Since the order of G[n]  is the number of elements 

whose order divides n, we can count the number of 

elements of order  n  as follows: 

 

# elements of order n in G 

= |G[n]|  − 
 ndnd

dorderofelements
,|

#  

 

Example 18: Find the order profile of G = ℤ4  ℤ6  ℤ9. 

Solution: Since 36G = 0 the order of each element divides 

36. 

We list the subgroups G[n] and their orders: 

 

n 1 2 3 4 6 

G[n] 1 ℤ2 ℤ2 ℤ3 ℤ3 ℤ4 ℤ2 ℤ2 ℤ6 ℤ3 

|G[n]| 1 4 9 8 36 

 

n 9 12 18 36 

G[n] ℤ3 ℤ9 ℤ4 ℤ6 ℤ3 ℤ2 ℤ6 ℤ9 G 

|G[n]| 27 72 108 216 

 

So the order profile is: 

order number  

1 1  

2 3 = 4 − 1 

3 8 = 9 − 1 

4 4 = 8 − 3 − 1 

6 24 = 36 − 8 − 3 − 1 
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9 18 = 27 − 8 − 1 

12 32 = 72 − 24 − 4 − 8 − 3 − 1 

18 54 = 108 − 18 − 24 − 8 − 3 − 1 

36 72 = 216 − 54 − 32 − 18 − 24 

TOTAL 216                    − 4 − 8 − 3 − 1 

 

 The above process can be reversed. For a finite 

abelian group, knowing the number of elements of each 

order is sufficient to identify the group, up to 

isomorphism. (This can’t be done with non-abelian 

groups as there are non-isomorphic groups with the same 

order profile.) 

 

 If p is a prime and G is a finite group then the Sylow 

p-subgroup of G is the set of all elements whose order is 

a power of p. It is named after the Norwegian 

mathematician Ludwig Sylow [1832 – 1918]. We denote 

it by Sylp(G). (For non-abelian groups this set is not 

usually a subgroup and Sylow subgroups are defined 

differently.) 

 

Example 19: The Sylow 2-subgroup of ℤ100 is 

{0, 25, 50, 75} = 25 which is isomorphic to ℤ4. 

 

Theorem 12: Every finite abelian group is the direct sum 

of its Sylow subgroups. 

Proof: We can write every finite abelian group as a direct 

sum of cyclic groups. Every cyclic group can be broken 

up as a direct sum of cyclic p-groups, for various primes 



 403 

p. Collecting all those for a particular prime p we get the 

corresponding Sylow p-subgroup. Hence the group can be 

written as a direct sum of its Sylow subgroups. 

 

Example 20: ℤ25
# has order 20 and an element of order 4, 

so it is isomorphic to ℤ 4  ℤ 5. 

Hence ℤ100
#  ℤ50

#  ℤ4
#  ℤ25

#  ℤ2
  ℤ4  ℤ5. 

So Syl2(ℤ100
#)  ℤ2  ℤ4 and Syl5(ℤ100

#)  ℤ5. 

 

Theorem 13: If G, H are finite abelian groups then 

Sylp(G  H) = Sylp(G)  Sylp(H). 

 

Example 21: 

Syl2(ℤ100  ℤ50) = Syl2(ℤ100)  Syl2(ℤ50)  25  25. 

We have to be a little careful here because these two direct 

summands are not equal. They are both generated 

additively by 25 but in different groups. The first is 

isomorphic to ℤ4, while the second is isomorphic to ℤ2. 

Hence Syl2(ℤ100  ℤ50)  ℤ4  ℤ2. 

 

Example 22: Find the Sylow 2-subgroup of ℤ100
#. 

Solution: Since ℤ100
#  ℤ4

#  ℤ25
# 

                  Syl2(ℤ100
#)  Syl2(ℤ4

#)  Syl2(ℤ25
#). 

Now |ℤ4
#| = (4) = 2 while | ℤ25

#| = (25) = 20. 

Hence |Syl2(ℤ25
#)| = 4 and, of course |Syl2(ℤ4

#)| = 2. 

It follows that | Syl2(ℤ100
#)| = 8. 

So Syl2(ℤ100
#)  ℤ8, ℤ4  ℤ2 or ℤ2  ℤ2  ℤ2. 

We can decide which one by finding the number of 

elements of order 2. 
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 If x  ℤ100
# has order 2 then (x −1)(x + 1)  0 (mod 

100). Clearly x must be odd and so (x −1)(x + 1)  0 (mod 

25).  Now 25 must divide the product, and 5 can’t divide 

each of the factors because they are only 2 apart. So 25 

must divide one of the factors. 

 

The only possibilities are 1, 49, 51 and 99 and so there are 

3 elements of order 2 which means that Syl2(ℤ100
#)  ℤ4  

ℤ2. We just need to find an element of order 4. Clearly 7 

will be a candidate and 7 times each of the elements of 

order 2 will give the other 3 elements of order 4. So 

Syl2(ℤ100
#) = {1, 7, 43, 49, 51, 57, 93, 99}. 

 

 Given the order profile of a finite abelian group we 

can identify it as a direct sum of cyclic groups. 

  

Example 23: A certain abelian group has order 216 = 8  

27. It could be any one of the following nine possibilities: 

ℤ8  ℤ27 ℤ4  ℤ2  ℤ27 

ℤ2  ℤ2  ℤ2  ℤ27 ℤ8  ℤ9   ℤ3 

ℤ4  ℤ2  ℤ9   ℤ3 ℤ2  ℤ2  ℤ2  ℤ9   ℤ3 

ℤ8  ℤ3  ℤ3  ℤ3 ℤ4  ℤ2  ℤ3  ℤ3  ℤ3 

ℤ2  ℤ2  ℤ2  ℤ3  ℤ3  ℤ3 

 

Suppose we’re given its order profile: 
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order number 

1 1 

2 3 

3 8 

4 4 

6 24 

9 18 

12 32 

18 54 

36 72 

TOTAL 216 

Since G has elements of order 4, but none of order 8, 

Syl2(G)  ℤ2  ℤ4. 

Similarly G[3] has order 9 and so Syl3(G) must be the 

direct sum of two cyclic subgroups and so has to be 

ℤ3  ℤ9. Thus G  ℤ2  ℤ4  ℤ3  ℤ9. 

 Note that this is not in the form that we began with 

in the previous example, but since ℤ2  ℤ3  ℤ6 it can be 

easily brought to that form if we desire. 

 

 If a Sylow p-subgroup has order p4 and G[p] has 

order p2 we know that it has two cyclic direct summands 

in its decomposition, but we don’t know whether it is 

ℤp2
  ℤp2 or ℤp  ℤp3. In such a case we’d need to examine 

elements of higher order.  In the first case G[p2] would 

have order p4 while in the second case it would have order 

p3. 
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Example 24: Which abelian group has the following 

order profile? 

order number 

1 1 

2 7 

4 24 

8 32 

TOTAL 64 

 

 So G[2] has order 8 = 23 so is isomorphic to 

ℤ2  ℤ2  ℤ2. Thus there are 3 cyclic summands in the 

direct sum decomposition. 

 Since G[4] has order 1 + 7 + 24 = 32 = 25 it’s 

isomorphic to ℤ2  ℤ4  ℤ4, so one of the cyclic 

summands is just ℤ2. Since G[8] has order 64 = 26 it must 

be ℤ2  ℤ4  ℤ8. But clearly G[8] = G so 

G  ℤ2  ℤ4  ℤ8. 

 

§9.8. The Alexander Group of a Knot 
 There are many places throughout mathematics 

where finitely-generated abelian groups arise in a very 

natural way. One of these is that part of topology that 

studies knots. 

 What motivates knot theorists is not the desire to 

come up with a better knot for tying things (even though 

the knots we tie in ropes, such as the granny knot, are 

indeed knots in the knot theorist’s sense). 



 407 

 Last century chemists believed that space was 

knotted and that this was somehow connected to the 

chemical properties of a substance. This caused a flurry 

of activity in the area. Later it proved not to be the case 

and so for many decades knot theory was considered as a 

bit of a curiosity. But in the last twenty years there’s been 

a resurgence of activity. This is partly because new 

methods were developed (and in the first instance by a 

physicist) and partly because physicists and biologists 

have begun to see knotted-ness in the things they study 

such as molecular flows and DNA. 

 

 A knot is a closed curve in ℝ3 that doesn't intersect 

itself. The knots we tie have two loose ends. But in order 

to keep the integrity of a knot, so that it doesn’t change 

into another, we need to keep the ends far apart, or better 

still, we simply join them together. 

 

Example 25: The figure 8 knot and its mirror image 

are: 

 

 

 

 

 

 

Two knots are equivalent if one can be deformed into the 

other without breaking it open.  
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Example 26: These two figure 8 knots are equivalent. 

The proof is in the doing. 

Take a piece of string, tie 

the knot and then join the 

ends together. Manipulate 

the knot, without untying, 

so it looks like the other. 

 

But the figure 8 knot is not equivalent to the trefoil knot 

that’s shown at the right. This is not simply 

because of a different number of crossings. 

For example in the right-hand picture of 

the figure 8 knot above, if we change the 

over/under nature of the middle crossing it 

becomes equivalent to this trefoil even though it would 

still have four crossings. (You can demonstrate this with 

an actual piece of string!) 

 In fact there are two, distinct, trefoil 

knots, the other being  

 

 

 

 

 Unlike the figure 8 knot, no amount of 

manipulation can change one trefoil knot into the other. 

 

 It is easy to prove that two knots are equivalent. 

You just have to change one into the other with a oiece of 

string (or provide a series of drawings to illustrate the 
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process). But how do you prove that two knots are 

inequivalent? The answer is to construct invariants, that 

is, mathematical objects that you can prove will remain 

the same as a knot is manipulated. If two knots have 

different values of such an invariant they cannot be 

equivalent. 

 

 The Alexander group A(K) of a knot is an abelian 

group that is just such an invariant. If two knots have non-

isomorphic groups they’re inequivalent (though if they 

have isomorphic Alexander groups they may still be 

inequivalent). 

 Suppose a knot has a projection with  n  crossings. 

Regarding this as a map on the sphere (the outside being 

counted as a region) there are  n  vertices and  n  edges. 

By Euler’s theorem: V + F − E = 2 where V = E = n. There 

are thus n + 2 ‘faces’ or regions. We assign the value 0 to 

two adjacent faces (usually we choose one of these to be 

the outside region of the knot). We then assign a generator 

to each of the remaining faces. These are the generators 

of A(K). There are n relations, one for each crossing. 

 If the regions surrounding a crossing are a, b, c, d, 

with a, b one side of the overpass and c, d on the other 

a          b 

 

                              c          d 

 

the corresponding relation is a + b = c + d. 
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Example 27: For the figure-eight knot the Alexander 

Group is A(K) = [a, b, c, d | a + b = c, a + d = b + c, 

                                                               a = d, c + d = 0] 

 

 

 

 

 

 

 

 

 
 

                         









1  1  −1  0

1  −1 −1  1

1  0  0  −1

 0  0  1  1

    ℤ5. 

 

 You can find further information on Alexander 

Groups, as well as other invariants, in my notes on 

Topology.  

 

0 0 0 
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EXERCISES FOR CHAPTER 9 
 

EXERCISE 1: For each of the following statements 

determine whether it is true or false. 

(1) All cyclic groups are abelian. 

(2) All abelian groups are cyclic. 

(3) 






2   0

0   3
  is a cyclic group. 

(4) 






2  0  2

0  2  2

0  0  0
   







2  0  2

0  2  2
 . 

(5) 






2  2  0

0  8  0
   







2  2

0  8
 . 

(6) ℤ8  ℤ10  ℤ80. 

(7) ℤ8  ℤ11  ℤ88. 

(8) Every finitely generated abelian group is a direct sum 

of cyclic groups of prime power order. 

(9) ℤ2  ℤ2  ℤ2 has more elements of order 2 than 

ℤ2  ℤ4. 

(10) Every non-trivial subgroup of ℤ is isomorphic to ℤ. 

 

EXERCISE 2: Write down the relation matrix for the 

abelian group: 

[A, B, C | 8A = 2B = 8C = 4A = 10B + 12C = 0] 

 

EXERCISE 3: Write down the relation matrix for the 

abelian group ℤ16  ℤ2  ℤ. 
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EXERCISE 4: Write ℤ3000 as a direct sum of cyclic 

groups of prime power order. 

 

EXERCISE 5: Write the abelian group 

[A, B | 4A + 4B = 6A + 8B] 

as a direct sum of cyclic groups. 

 

EXERCISE 6: Write the abelian group 

[A, B, C | 2A + 2B + 2C = 0] 

as a direct sum of cyclic groups. 

 

EXERCISE 7: Write the following abelian group as a 

direct sum of cyclic groups of prime power order: 

 






11  22  13

14  25  16

19  50  23
 . 
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SOLUTIONS FOR CHAPTER 9 
 

EXERCISE 1: 

(1) TRUE; (2) FALSE; (3) TRUE; (4) TRUE; (5) 

FALSE; (6) FALSE; (7) TRUE; (8) FALSE (infinite 

ones are not); (9) TRUE; (10) TRUE. 

 

EXERCISE 2: 






8  −2   0

4   0   −8

0  10  12

 . 

 

EXERCISE 3: 






16  0  0

0   2  0
  

 

EXERCISE 4: ℤ125  ℤ8  ℤ3  

 

EXERCISE 5: The relation matrix is 






4 4

6 8
   







4 4

2 4
  

 






2    4

0  −4
   







2    0

0  −4
   







2 0

0 4
  ℤ2  ℤ4. 

 

EXERCISE 6: The group is [2, 2, 2]  [2, 0, 0] 

 ℤ2  ℤ  ℤ. 

 

EXERCISE 7: 







11  22  13

14  25  16

19  50  23
   






11  22  13

3   3   3

8   28  10
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                   






3   3   3

11  22  13

8   28  10
  

                   






3   3   3

2  13  4

2  22  4
  

                   






2  13  4

3   3   3

2  22  4
  

                   






2   13   4

1  −10  −1

0   9   0
  

                   






1  −10  −1

2   13   4

0   9   0
  

                   






1  −10  −1

0   33   6

0   9   0
  

                   






1   0   0

0  33  6

0   9   0
  

                  






33  6

9   0
  

                  






9   0

33  6
  

                  






9  0

6  6
  

                  






6  6

9  0
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                      






6   6

3  −6
  

                      






3  −6

6   6
  

                      






3  −6

0  18
  

                      






3   0

0  18
  

                       ℤ3  ℤ18 

                             ℤ3  ℤ9  ℤ2. 
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