9. FINITELY GENERATED
ABELIAN GROUPS

89.1. Finitely Presented Abelian Groups
The group:
(A, B, C|A* B?, AB=BA, AC=CA, BC=CB)
is an example of a finitely-presented abelian group, but
one which is written multiplicatively. Additively we
would write it as:
(A,B,C|4A,2B,A+B=B+A,A+C=C+A,
B+C=C+B).
But if we’re working entirely with abelian groups
we know that the generators commute so we omit the
commuting relations and use [ ] instead of { ). We write
the group simply as [A, B, C | 4A, 2B]

We denote the abelian group generated by X, ... , Xj
subject to the relators Ry, ... , Ry by

[X1, ..., Xn| Ry, ..., Rm].
The relators are written additively.

Now a typical relator, Rj, can be written in the form
ai1X1 + ... + ainXy where the ajj form an m x n matrix of
integers A. Since the names of the generators are not
important, and the number of them is the same as the
number of columns of A, we can recover the presentation
from just the integer matrix A.
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For any m x n integer matrix A = (ajj), [A] denotes
the abelian group on n generators Xj, ... , X, subject to
the m relations:

anXi1+...+anXp=0
anXi+...+anXn=0
amiX1+ ... +amnXn =0
Where the matrix is written in terms of its components we
omit the usual matrix parentheses.

Example 1:
800

080 :
008 denotes the abelian group

222
[A, B, C|8A, 8B, 8C, 2A + 2B + 2C].

Essentially a finitely-presented abelian group is a
system of homogeneous linear equations, but with integer
coefficients. The important difference between these and
those that arise in linear algebra is that here, division is
not permitted. For example an element, x, of order 8
satisfies 8x = 0 which in linear algebra would imply that
X = 0. But that’s because in linear algebra the coefficients
come from a field while for abelian groups they’re
integers. We can only divide by those integers that have
integer inverses under multiplication, that is, +1.
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800
Example 2: {0 8 0} denotes the abelian group\
008
[X,Y, Z]|8X,8Y, 8Z].
This is clearly a direct sum of cyclic groups, each of order
8 and so the group is isomorphic to Zg ® Zg @ Zs.

Where the matrix is diagonal we can read off, from
the diagonal elements, the nature of the corresponding
abelian group as a direct sum of cyclic groups.

800

Example 3: [0 8 0} denotes the abelian group
000
[X,Y,Z]|8X,8Y].

Strictly speaking we should have written down the third
relator, 0Z, representing the relation 0Z = 0, but this is
clearly redundant. The last generator has infinite order, so
the group is isomorphic to Zg @ Zs @ Z.

So where the diagonal entry is 0 the corresponding
direct summand is Z (not Zo). In the above example the
third row is superfluous so we can write:

800
080 -[¢00] smom oz
000
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§9.2. Elementary Row Operations

We’re in a similar situation to that part of linear
algebra that deals with the solution of systems of linear
equations. Remember the powerful role played by the
elementary row operations in the solution of such systems
and the part they play in the Gaussian algorithm.

Let’s review the three types of elementary row
operations.

Ri <> Rj: swap rows i, j

This is equivalent to swapping a pair of equations in our
system and, just as in linear algebra, this is permissible.
The new system is equivalent to the original one and so
the groups are isomorphic.

Example 4:

8 6 5 3 8 -2
{3 8 —2};{8 6 5}

10 -3 10 -3

where we’ve swapped R; and R,.

Ri + k: Divide row i by k (k =1 only)

This is where our abelian group situation differs
from the linear algebra one. Our ‘scalars’ here are integers
and division is not generally permitted. In fact the only
values of k for which this operation is permissible are k
=+1.
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Ri — kRj: subtract k times row j from row i (k any
integer)

This is the most useful of all the elementary row
operations in linear algebra and so it is here. Of course in
our context only integer values of k can be used here.

Example 5:
8 6 5
LetG:{3 8 —2]
10 -3
Subtracting twice row 2 from row 1 we get

2-10 9
Gz {3 8 —2} .
1 0 -3
1 0 -3
Swapping rows 1 and 3 we get G = {3 8 —2} :
2 -10 9
Now, mimicking the Gaussian algorithm, we can subtract

3 times row 1 from row 2 and twice row 1 from row 3 to
get 0’s underneath the 1 in the first column.

1 0 -3
Gz=|0 8 7.
0 -10 15
Now, adding row 2 to row 3 (that is R; — (-)R2) we get
1 0 -3
G ;{O 8 7 } . We write this as R3 + Ry, though adding

0 -2 22
a multiple of a row is not a new operation. Note here that
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only the first named row gets changed. So R, + Rs is a
different operation to R3 + R.

1 0-3

Now we can swap rows 2and 3toget G= |0 -2 22} :
[0 8 7
1 0 -3]
Now, with R; + 4R, we get G = {O -2 22 |.

0 0 95
If we could reach a diagonal matrix we would have
identified the group as a direct sum of cyclic groups. But
here this seems to be about as far as we can go. Any
further elementary row operations would only make the
matrix more complicated — less like a diagonal matrix. We

need additional operations.

§9.3. Elementary Column Operations

Elementary row operations convert a set of
homogeneous linear equations into an equivalent set for
the same set of variables. Once we start using column
operations we begin to change the variables. But if we’re
only interested in the structure of the group, up to
iIsomorphism, we can use elementary column operations
to produce a simpler set of equations on a different, but
equivalent, generating set.

The simplest case would be that of swapping two
columns. The effect is to swap the corresponding
generators. The groups described by the presentations
will be isomorphic.
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3 3 6
Example6:{8 4 0

0 12 12
[A,B,C|3A+3B+6C=8A+4B =12B + 12C = 0]
[A,B,C|3A+3C+6B =8A+4C=12B + 12C = 0]
[A,B,C|3A+6B+3C=8A+4C=12B + 12C =0]

3 6 3
~|8 0 4
0 12 12

The effect of swapping the two generators B and C is to
swap two columns of the integer matrix of the
presentation.

e 1 m

Equally simple is an operation of the form C; x —1
which changes the sign of every entry in a given column.
If X; is the corresponding generator this corresponds to
replacing X; by —X;.

When it comes to subtracting an integer multiple of

one column from another the effect on the generators is a
little less obvious. Consider the following example:
Example 7:

3 6 3
[8 17 4}

0 5 2
= [Xl, X, X3 | 3X1+6Xs+ 3X3,8X1+17 Xo +4X;3,

5X, +2X3= 0]
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Define X;' = X; + 2X,. Clearly the group is generated by

{X1', Xz, X3} since X; = X;' — 2Xa.

Expressing the relators in terms of this new set of

generators we get:

3(X1' — 2X2) + 6X5 + 3X3, 8(X1' — 2X2) + 17X, + 4X3,
5X5 +2X3=0.

So the group has the equivalent presentation
[Xll, Xo, X3 | 33X +3X3, 8Xy + Xo+4X3,5X5 + 2X3]

303
~18 1 4].
05 2

The effect of the change of variables X; — X;' = X; + 2X;
is the elementary column operation C, — 2C;. Note the
change of sign and the swapping of the subscripts.

If the generators are Xy, ..., Xn:

Ci e Cj corresponds to Xi <> X;
Cix -1 corresponds to Xi > —X;
Ci — kCj corresponds to Xj — Xj + kX

Theorem 1: If the integer matrix B is obtained from A
by a sequence of elementary row and column operations

then [B]z[A]. ©

Example 8:

10 14 4 4 14 10

12 16 8 |=[8 16 12 |C; < C;
14 18 8 8 18 14
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[

R

4 2 2
8 -8 —4j| C,-3C;
| 8 -6 -2
4 2 2
0 -12 —8j| R, — 2R;, R3 — 2R,
|0 -10 -6
2 4 2
-12 0 —8:| CieoC,
[ -10 0 -6

2 0 0
-12 24 4|C,-2Cy,C3-C,
-10 20 4

0 O
24 4:| R, + 6R{, R3 + 5R;
20 4
0]
24 Cz <> C3

0 [C3-6C;

0 |[R3—-R;

oOphrhrhoO PO~ pPpOoObMMO
I
=

Oi| Cs x (-1)
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We’ve managed to get the matrix of an equivalent
presentation in diagonal form. But in terms of the new
generators this is clearly a direct sum of cyclic groups,
Viz. Lo @ Za @ Za.

89.4. The Fundamental Theorem of
Finitely-Generated Abelian Groups

Using the elementary row and column operations
we can convert every integer matrix to diagonal form, and
hence we have the following theorem.

Theorem 2: Every finitely-presented abelian group is a
direct sum of cyclic groups.
Proof: Let A be the presentation matrix for a finite
presentation of an abelian group.
Case (1): Ais1x 1:
Let A = (m). We can multiply by —1, if necessary, so we
may assume that m > 0.
Then [A]=zZ ifm=0and

Zm it m > 0.
(Of course Z, is the trivial group so may be removed if it
arises.)

Case (2)A=(m, 0, ..., 0) for some m:

[A] is isomorphic to the direct sum of Z,and n— 1 copies
of Z.
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o 3

Case (3) A= for some m: Clearly [A] = Zn.

0
Case (4) A is the m x n zero matrix:
Clearly [A] is isomorphic to the direct sum of n copies of
4.

Case (5) The general case:

Suppose now that A = 0 and has at least 2 rows and at
least 2 columns. Choose a non-zero element with smallest
absolute value. Permute rows and columns to bring it to
the 1-1 position and, if necessary, multiply the first
column by —1 to make it positive. Now subtract suitable
multiples of the first row and column from the others so
that all other entries in the first row and column are in the
range 0 < x < a.

This whole process can be continued, reducing the
smallest non-zero absolute value, until the matrix takes
m

0 0 :
the form (m, O, ..., 0), or (rg B) where m is a non-

0
negative integer and B is an integer matrix with one less
row and column.

The theorem now follows by induction on the number of
generators. %©
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Example 9:

|

9 6 75
30211713
1815 7 5

|

R

I

IR

12

I

1

1

1N

1N

12

12

13302117 | permute columns

1330 817 | C3-C4
L 51810 7
1 59 7]

8 1330 17 | permute columns
110 518 7
1 5 9 7

0 -27 -42 —39} R>—8R1, R3—10R;
L 0 —45 -72 -63
1 000

02742 39} Cs—5C1, C3-9Cy, C4—7C4
| 0457263

27 4239] .
| 457263) OMItZ
27 42 12]
457218 &~ O
(12 27 42]
| 18 45 72| Permute columns
(12 3 42]
18 9 72) &2~ 20
1312 42
918 72 permute columns
3 12 42
0 -18 —54/R2 3R
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= i:g 12 52] C2 — 4C1, C3 — 14C1
=73 D [18 54]

= 73 @ [18 0] Cz — 3C1

= Zg @ Zlg @D Z.

The above theorem deals with finitely-presented
abelian groups, those where there’s not only a finite set of
generators, but where the relations that hold between
them can be deduced from a finite set of relations. What
about those that are merely finitely-generated?

By adapting the above argument slightly we can
show that they too are direct sums of cyclic groups. And
since direct sums of finitely many cyclic groups are
finitely-presented it follows that all finitely-generated
abelian groups are indeed finitely-presented!

Theorem 3: Every finitely-generated abelian group is a
direct sum of cyclic groups.

Proof: Suppose we have a finitely-generated abelian
group G. Consider the set of all relations that hold
between the generators and let the coefficients be
arranged in an integer array. This will in fact be a matrix
with as many columns as there are generators, but with
possibly infinitely many rows. Exactly the same
algorithm can be used as before. With infinitely many
rows of course there’d be practical difficulties in
implementing it but since all the rows can be operated on
in parallel there’d be no theoretical problem. The
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finiteness of the number of columns means that the
algorithm will terminate eventually. %©

§9.5. Euler’s Theorem

A ready source of finite abelian groups can be
found as integers modulo m under multiplication. Recall
that if m is any positive integer Z." denotes the group of
all numbers from 1 to m that are coprime with m, under
the operation of multiplication modulo m. (The
coprimeness ensures the existence of inverses.)

Example 10: Z+# = {1, 2, 3, 4, 5, 6} = Z;
Zg# = {1, 3, 5, 7} =~7,®D Lo,
Zlo# = {1, 3, 7, 9} = 7.

The order of Z," is denoted by ¢(m).This function
¢ is called the Euler ¢ function. (NOTE you pronounce
‘Euler’ as “Oiler’.) It is an important function in number
theory, with ¢(m) being the number of numbers from 1 to
m that are coprime with m.

Lemma: (CHINESE REMAINDER THEOREM)
If m, n are coprime then for all a, b € Z there exists
X € Z such that:
X =a (mod m) and
X =b (mod n).
Proof: Since m, n are coprime there exist integers h, k
such that 1 = mh + nk.
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Let x =a+ m(b —a)h. Clearly x=a (mod m).
Now x = a(1 — mh) + mhb

= a(nk) + mhb

=nka + (1 —nk)b

=b + nk(a —b)

=b (mod n). %©

Theorem 4: If m, n are coprime then Zmn* = Zn* x Zn".
(We use “x” here instead of ‘@’ simply because we’re
using multiplicative notation.)

Proof: Suppose that m, n are coprime. Then x — (X, X)

is a homomorphism from Zmn* to Zn* x Zy* since x is
coprime to mn if and only if it’s coprime to both m and
n.

The kernel of this map is trivial since, if x — (1, 1), then
x —1 is a multiple of both m and n and so is a multiple
of mn (because m and n are coprime). The fact that
this map is onto is a consequence of the Chinese
Remainder Theorem (the lemma above). % ©

Corollary: If m, n are coprime ¢(mn) = @(m) o(n).

Theorem 5: If p is prime, o(p") = p™* (p — 1)

Proof: Of the p" numbers from 0 to p" -1 there are
precisely p"! multiples of p. The remaining p" — p"* =
p"(p — 1) numbers will be precisely the ones with no
factor in common with p". Hence ¢(p") =p"*(p - 1). ¥©
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Example 11: ¢(200) = (23.5%) = 22(2 — 1) 5'(5 — 1)
=4.1.5.4 = 80.

Theorem 6: (EULER) If a is coprime with m then

a®™ =1 (mod m).
Proof: Suppose a is coprime with m. Then a e Zp".
Suppose it has order n. By Lagrange's theorem n divides
¢@(m). Thus @(m) = ng for some q € Z.

Now a®™ = (a9 =19=1. %@©

Corollary: (FERMAT) If p is prime then
a’=a (mod p).

Proof: If pdivides a then LHS =RHS =0.

Otherwise, by Euler’s theorem aP~! = 1(mod p).

Euler's theorem can be used to calculate the remainders of
certain very large numbers.

Example 12: What is the remainder on dividing 5°% by
427

Solution: ¢(42) = ¢(2.3.7) = 12 s0 52 = 1 (mod 42).

We note that 5 is coprime to 42.

Dividing 1000 by 12 we get a remainder of 4.

[1000 = 12 x 83 + 4]

So 51000 = (512)83 54 = 183 54 = 625 = 37,

Hence 5% leaves a remainder of 37 when divided by 42.
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NOTE: To work this out directly, by calculating 5%
first, would need far more computing power than is
normally available.

In the decomposition of a finitely-generated group
as a direct sum of cyclic groups the only finite summands
we need are those whose orders are prime powers. This is
because of the following theorem, which parallels
Theorem 5.

Theorem 7: If m, n are coprime then Zmn = Zm @ Zn.
Proof: Letx=(1,1) € Zm ® Zn.

Then kx = (k, k) = (0, 0) if and only if k is both a multiple
of m and n. Since m, n are coprime this requires k to be a
multiple of mn and so x has order mn, the same as the
order of the group Zm @ Z, itself. Hence Zm @ Zn is cyclic
and so is isomorphic to Zm,. % ©

Example 13: Zys = Z3 @ Zg. Note that we can’t split Zg
into Z, ® Z, ® Z, because Zg has only one element of
order 2 while Z, ® 7Z, ® Z, has 7 such elements.

§9.6. Some Important Subgroups of an
Abelian Group
For an integer n and an abelian group G we define
nG={ng|g e G}.
Clearly this is a subgroup of G since n(x +y) = nx + ny
etc. Using multiplicative notation we would write this as
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G"={g" | g € G}. Since this may not be a subgroup of G
if G is non-abelian we don’t define this unless the group
is abelian.

Examples 14:
(1) If G = Z4 @ Zsg, then
26 =4(0,0),(0,2),(0,4),(0,6), (2,0), (2,2), (2, 4),
(2,6)}
;ZZ@Z4and3G:G.
(2) If G =7Z4 @ Zs then
26 =1(0,0),(0,2),(0,4),(2,0), (2,2), (2, 9}
=~ 7o ® Z3 and
36 =4(0,0),(0,3),(3,0),(3,3),(2,0), (2,3), (1, 0),
(1, 3)} =74 D Z.

Theorem 8: If G, H are abelian groups
n(G @ H) 2 nG @ nH.
Proof: The map n(x, y) = (nx, ny) is an isomorphism. % ©

n
Theorem 9: m Zn = Zq where d = GCD(m, n) -
Proof: mZy is clearly cyclic, generated by m, and km =0

in Z, if and only ifm divides k. Thus m has order

n _ _
GCD(m, n) and generates a cyclic group that is

isomorphic to Zn/ccp(m, n). %O
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Example 15:
If G = L3 @ ZlOO, 2G = /AT @ Z5o, 3G = Z1o @ ZlOO,
6G = Zs ® Zso and 28G = Zas D Zos.

Another useful subgroup, for each positive integer
n, is G[n] = {g € G| ng = 0}. It consists of those elements
of G whose order divides n and it’s clearly a subgroup of
G since nx =0 and ny =0 imply n(x +y) =0, etc.

We use the same notation if the abelian group is
written multiplicatively, but here we would define it as
G[n] ={g € G| g"=1}. Again, for a non-abelian group it
isn’t usually a subgroup and so we don’t define it unless
the group is abelian.

Examples 16:
(1) |f G= Z4 @ Zg,
G[2] ={(0,0),(0,4),(2,0), (2,4} =7, ® Z, and
G[3] =0.
(2 IfG=7Z4® Zs, G[2] ={(0, 0), (0, 3), (2,0), (2, 3)}
=7,D7Z, and
G[B] = {(0’ O)’ (01 2)! (O’ 4)} = ZS-
(3) If G = Zy" then G2 = {1, 3%, 72, 92, 112, 13?, 17?, 19%}
= {1, 32, 72, 9%} since (—x)? = x?
={1,9}=7Z,and
G[2]={1,9,11,19} = 7Z, ® Z,.
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Theorem 10: If G, H are abelian groups

(G @ H)[n] = G[n] @ H[n].
Proof: This is because k(x, y) =0 if and only if kx =0 in
Gandky=0inH. %©

Theorem 11: Zm[n] = Zsco(m, n).
Proof: Suppose k € Zm[n]. Then nk =0 in Zy, and so m

divides nk. Hence m divides k. Thus Zmy[n] is a

: m :
cyclic group generated by m and so is

isomorphic to Zgcpm, n). YO

Example 17:
IfG= Z3o @ Z100, G[Z] =~ 7, ® Lo, G[3] = 73,
G[6] = Zs @ Z, and G[28] = Z, @ Z.a.

§89.7. The Order Profile of a Finite
Abelian Group.

Once a finite group G has been written as a direct
sum of cyclic groups the numbers of elements of each
order can be easily determined. This is because we can
easily identify the subgroups G[n] for each n and hence
recover the order information. A table that lists the
numbers of elements of each order is called the order
profile of the group.
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Since the order of G[n] is the number of elements
whose order divides n, we can count the number of
elements of order n as follows:

# elements of order nin G
= G[n]| — 2_#elementsof order d

din,d<n

Example 18: Find the order profile of G = Zy @ Zs @ Zo.
Solution: Since 36G =0 the order of each element divides
36.

We list the subgroups G[n] and their orders:

n 1 2 3 4 6
G[n] 1|\ Zo®Zy | s Uz | Za® 7y | Zo® Zs® Zs
cml[i] 4 9 8 36
n 9 12 18 36
GIN]|Z:®D Zg | ZsP Ze® 73 | LoD 7D Zy | G
el 27 72 108|216

So the order profile is:
order number

1 1

2 3|=4-1

3 8/=9-1

4 41=8-3-1

6 241=36-8-3-1
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9 18|=27-8-1

12 32|=72-24-4-8-3-1

18 94 |=108-18-24-8-3-1

36 /2|=216-54-32-18-24
TOTAL 216 -4-8-3-1

The above process can be reversed. For a finite
abelian group, knowing the number of elements of each
order is sufficient to identify the group, up to
isomorphism. (This can’t be done with non-abelian
groups as there are non-isomorphic groups with the same
order profile.)

If pisaprime and G is a finite group then the Sylow
p-subgroup of G is the set of all elements whose order is
a power of p. It is named after the Norwegian
mathematician Ludwig Sylow [1832 — 1918]. We denote
it by Sylp(G). (For non-abelian groups this set is not
usually a subgroup and Sylow subgroups are defined
differently.)

Example 19: The Sylow 2-subgroup of Ziq is
{0, 25, 50, 75} = (25) which is isomorphic to Z,.

Theorem 12: Every finite abelian group is the direct sum
of its Sylow subgroups.

Proof: We can write every finite abelian group as a direct
sum of cyclic groups. Every cyclic group can be broken
up as a direct sum of cyclic p-groups, for various primes
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p. Collecting all those for a particular prime p we get the
corresponding Sylow p-subgroup. Hence the group can be
written as a direct sum of its Sylow subgroups.

Example 20: Z,s* has order 20 and an element of order 4,
so it is isomorphic to Z 4 ® Zs.

Hence ZlOO# @ Zso# = Z4# @ 225# = 7o ® Zy D Zs.

So Sy|2(Zloo#) =7o @ Zs and Sy|5(Zloo#) = 7s.

Theorem 13: If G, H are finite abelian groups then
Syly(G @ H) = Syl (G) @ Syl,(H).

Example 21:

Sy|2(Zloo @ Z50) = Sylz(Zloo) @® Sylz(Zso) = <25> @® <25>
We have to be a little careful here because these two direct
summands are not equal. They are both generated
additively by 25 but in different groups. The first is
iIsomorphic to Z4, while the second is isomorphic to Zo.
Hence Sylz(Zloo @ Z50) =74 ® Zo.

Example 22: Find the Sylow 2-subgroup of Z0".
Solution: Since Zioo* = Z4* x Zys*
Sylz(Zloo#) = Sylg(Z4#) X Sy|2(225#).
Now |Z4*| = ¢(4) = 2 while | Zos*| = ¢(25) = 20.
Hence |Sylx(Z,s)| = 4 and, of course |Syl,(Z4*)| = 2.
It follows that | Syl2(Z100%)| = 8.
So Sylz(Zloo#) =7, Lo @ Zo Or Zp D Zy D Zo.
We can decide which one by finding the number of
elements of order 2.
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If X € Z10o" has order 2 then (x —1)(x + 1) = 0 (mod
100). Clearly x must be odd and so (x —1)(x + 1) =0 (mod
25). Now 25 must divide the product, and 5 can’t divide
each of the factors because they are only 2 apart. So 25
must divide one of the factors.

The only possibilities are 1, 49, 51 and 99 and so there are
3 elements of order 2 which means that Syl,(Z100*) = Zs ®
Z,. We just need to find an element of order 4. Clearly 7
will be a candidate and 7 times each of the elements of
order 2 will give the other 3 elements of order 4. So
Sylx(Z100*) = {1, 7, 43, 49, 51, 57, 93, 99}.

Given the order profile of a finite abelian group we
can identify it as a direct sum of cyclic groups.

Example 23: A certain abelian group has order 216 = 8 x
27. It could be any one of the following nine possibilities:

Lg D Loz L ® Lo ® Ly
Lo @ Zp ® Zo D Zo7 Zg ® Zg ® Zs
£y D@ Ly ® Ly @ Zs Ao DLy D Ly D g D L3
Ag D 13D 73D 73 Ly DLy ®D U3 D 73D L3
Lo @ Ty DLy ® 73 D Lz ® Zs

Suppose we’re given its order profile:
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1 1

2 3

3 8

4 4

6 24

9 18

12 32

18 54

36 72
TOTAL 216

Since G has elements of order 4, but none of order 8,

Sy|2(G) =7 @ Za.

Similarly G[3] has order 9 and so Syl3(G) must be the
direct sum of two cyclic subgroups and so has to be
L3 ® Zg. ThUSGEZz@Z4@Zg@Zg.

Note that this is not in the form that we began with
in the previous example, but since Z, @ Zs = Zs it can be
easily brought to that form if we desire.

If a Sylow p-subgroup has order p* and G[p] has
order p? we know that it has two cyclic direct summands
in its decomposition, but we don’t know whether it is
Zp? ® Zp2 or Zp® Zps. In such a case we’d need to examine
elements of higher order. In the first case G[p?] would
have order p* while in the second case it would have order

pe.
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Example 24: Which abelian group has the following
order profile?
order number

1 1
2 7
4 24
8 32
TOTAL 64

So G[2] has order 8 = 23 so is isomorphic to
Zy @ Zp ® Z,. Thus there are 3 cyclic summands in the
direct sum decomposition.

Since G[4] has order 1 + 7 + 24 =32 = 2° it’s
isomorphic to Z, ® Zs ® Z4, SO one of the cyclic
summands is just Z,. Since G[8] has order 64 = 2° it must
be Z, ® Z4 ® Zg. But clearly G[8] = G so

Gz Lo D Ly ® Zs.

§9.8. The Alexander Group of a Knot

There are many places throughout mathematics
where finitely-generated abelian groups arise in a very
natural way. One of these is that part of topology that
studies knots.

What motivates knot theorists is not the desire to
come up with a better knot for tying things (even though
the knots we tie in ropes, such as the granny knot, are
indeed knots in the knot theorist’s sense).
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Last century chemists believed that space was
knotted and that this was somehow connected to the
chemical properties of a substance. This caused a flurry
of activity in the area. Later it proved not to be the case
and so for many decades knot theory was considered as a
bit of a curiosity. But in the last twenty years there’s been
a resurgence of activity. This is partly because new
methods were developed (and in the first instance by a
physicist) and partly because physicists and biologists
have begun to see knotted-ness in the things they study
such as molecular flows and DNA.

A knot is a closed curve in R® that doesn't intersect
itself. The knots we tie have two loose ends. But in order
to keep the integrity of a knot, so that it doesn’t change
into another, we need to keep the ends far apart, or better
still, we simply join them together.

Example 25: The figure 8 knot and its mirror image
are:

Two knots are equivalent if one can be deformed into the
other without breaking it open.
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Example 26: These two figure 8 knots are equivalent.
The proof is in the doing.
Take a piece of string, tie
the knot and then join the
ends together. Manipulate
the knot, without untying,
so it looks like the other.

But the figure 8 knot is not equivalent to the trefoil knot
that’s shown at the right. This is not simply
because of a different number of crossings.
For example in the right-hand picture of
the figure 8 knot above, if we change the
over/under nature of the middle crossing it
becomes equivalent to this trefoil even though it would
still have four crossings. (You can demonstrate this with
an actual piece of string!)

In fact there are two, distinct, trefoil
knots, the other being

Unlike the figure 8 knot, no amount of
manipulation can change one trefoil knot into the other.

It is easy to prove that two knots are equivalent.

You just have to change one into the other with a oiece of
string (or provide a series of drawings to illustrate the
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process). But how do you prove that two knots are
inequivalent? The answer is to construct invariants, that
Is, mathematical objects that you can prove will remain
the same as a knot is manipulated. If two knots have
different values of such an invariant they cannot be
equivalent.

The Alexander group A(K) of a knot is an abelian
group that is just such an invariant. If two knots have non-
isomorphic groups they’re inequivalent (though if they
have isomorphic Alexander groups they may still be
inequivalent).

Suppose a knot has a projection with n crossings.
Regarding this as a map on the sphere (the outside being
counted as a region) there are n vertices and n edges.
By Euler’s theorem: V + F—E =2 where V=E =n. There
are thus n + 2 “faces’ or regions. We assign the value 0 to
two adjacent faces (usually we choose one of these to be
the outside region of the knot). We then assign a generator
to each of the remaining faces. These are the generators
of A(K). There are n relations, one for each crossing.

If the regions surrounding a crossing are a, b, ¢, d,
with a, b one side of the overpass and c, d on the other

a | b

c|d

the corresponding relationisa+b =c +d.
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Example 27: For the figure-eight knot the Alexander
Groupis A(K)=[a,b,c,d|a+b=c,a+d=Db+c,

a=d,c+d=0]
0
11-10
1-1-11
=l100-1|%
0011

You can find further information on Alexander
Groups, as well as other invariants, in my notes on
Topology.
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EXERCISES FOR CHAPTER 9

EXERCISE 1: For each of the following statements
determine whether it is true or false.

(1) All cyclic groups are abelian.

(2) All abelian groups are cyclic.

(3) g } Is a cyclic group.

2
40
0

®)|o g o} E{cz) ﬂ

(6) g @ Z1o = Zsgo.

(7) Zg @® le = Zgg.

(8) Every finitely generated abelian group is a direct sum
of cyclic groups of prime power order.

(9) Z, ® Z, ® Z, has more elements of order 2 than

Ly D Zs.

(10) Every non-trivial subgroup of Z is isomorphic to Z.

EXERCISE 2: Write down the relation matrix for the
abelian group:
[A,B,C|8A=2B=8C=4A=10B +12C =0]

EXERCISE 3: Write down the relation matrix for the
abelian group Zs ® Z, @ Z.
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EXERCISE 4: Write Zso00 as a direct sum of cyclic
groups of prime power order.

EXERCISE 5: Write the abelian group
[A, B |4A + 4B = 6A + 8B]
as a direct sum of cyclic groups.

EXERCISE 6: Write the abelian group
[A,B,C|2A +2B +2C =0]
as a direct sum of cyclic groups.

EXERCISE 7: Write the following abelian group as a
direct sum of cyclic groups of prime power order:

11 22 13
14 25 16 |.

19 50 23
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SOLUTIONS FOR CHAPTER 9
EXERCISE 1:
(1) TRUE; (2) FALSE; (3) TRUE; (4) TRUE; (5)

FALSE; (6) FALSE; (7) TRUE; (8) FALSE (infinite
ones are not); (9) TRUE; (10) TRUE.

(8 -2 0
EXERCISE2:|4 0 -8].
0 10 12

1600}
0 20

EXERCISE 4: Zaos D Zg D Zs

EXERCISE 3:

) . . |44 44
EXERCISE 5: The relation matrix is {6 8} ~ {2 4}

{2 4}{2 0}{20}~
=l0 —4) =0 -4] Z[04|= 22O Ls

EXERCISE 6: The group is [2, 2, 2] = [2, 0, 0]
=7, D7D

EXERCISE 7:
11 22 13 11 22 13
14 2516 | = 3 3 3

19 50 23 8 28 10

413



] | 11 1 1

I e g ~y=

32%332332Bm9m39m%903 i
NN _ _ _ M P © OO O oo

POSpNNNONN S gaNgHogHogg oo

~

2l 2l 2l 2l 2l 2l TR T T T

414



~

~

~

~

= Zg @ Zlg

18

223@29@22.

415



416



